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ON THE DISTRIBUTION OF CONJUGATE POINTS

WALTER VANNINI

1. Introduction and main theorems

In 1958, L. W. Green published a curvature inequality for compact
riemannian manifolds without conjugate points [4]. For M a riemannian
manifold as above, he showed that f, Scal > 0. He also established that
equality occurs precisely when M is flat.

By Ambrose’s criterion for conjugate points, and an observation of A.
Avez regarding the use of Birkhoff’s Ergodic Theorem, Green’s inequality
can be quickly derived [1], [2]. By the same argument, and with the use of
a new criterion for conjugate points, we have a generalization of Green’s
inequality.

Theorem 1. Let M be a complete riemannian manifold of dimension n
with a finite volume and Ricci curvature bounded above. Then

(n—1)12n
< —F
/ Scal ol S T ~an) \/sup (0, Ric) /

In the above theorem, SM is the unit tangent bundle with the induced
Liouville measure, Ric: SM — R is the Ricci curvature function, and
¥:SM — [0, 0] is defined by

(v) = llrn inf L 1 / the number of points conjugate to
Yiv) =t cv(0) along c¢yi0,77, Where ¢y (f) = exp(tv)
For M the standard n-sphere of constant sectional curvature 1, y = 1/x,

Ric = n — 1, Scal = n(n — 1), and vol(SM) = vol(M)vol(S"~! can) The
standard n-sphere shows that the above generalization of Green’s inequal-
ity is sharp.

It would be desirable to also generalize Green’s equality statement. It
seems plausible that equality occurs in the generalized Green’s inequality
precisely when M has constant sectional curvature.

The new criterion for conjugate points, mentioned above, is

Received May 16, 1988.



834 WALTER VANNINI

Theorem 2. Let c: [0, L] — M be a unit speed geodesic on a riemannian
manifold of dimension n. If

/ Ric(c'(t))dt > n(n — 1)"/?,_ [ max (0, Ric(c'(¢))),

1€[0,L]
and Ric(c') is not identically zero, then c(0) has a conjugate point c¢(T)
along c for some T in (0, L].

Furthermore, if the smallest such T is L, then K(¢) = n*/L? for all
tangent two-planes ¢ containing a tangent vector to c.

This theorem provides an analogue to Myer’s criterion for conjugate
points [7]. His criterion is the same as ours, except that the curvature
condition is replaced by Ric(¢’) > (n — 1)m?/L2. Our criteria coincide
when Ric(¢’) = (n — 1)n?/L2.

It should be noted that the curvature condition in Theorem 2 cannot be
replaced by

/ Ric(c'(t))dt > (n — V)r?/L,

a sufficiently long geodesic beginning from the vertex of the paraboloid
z = x* + y2 demonstrates this. However, the curvature condition

/ Ric(c'(1))(1 — cos(2nt/L))dt > (n — 1)m?/L

is a valid replacement, as shown by L. W. Green [5] in 1963. At present,
this is the strongest generalization of Myers’ criterion.

An immediate consequence of Theorem 2 is the following supplement
to a result of Ambrose [1].

Theorem 3. Let c: [0,00) — M be a unit speed geodesic on a rieman-
nian manifold of dimension n, which gives rise to no conjugate points of
¢(0). Then

limsup/ Ric(c'(t))dt < =(n 1)1/2\/ sup (0, Ric(c'(2))).
T—o0 t€]0,00)

Ambrose showed that with the same hypotheses, Th_rgo fOT Ric(c'(¢))dt is
not +oo.

Corresponding to Theorem 2, there is a theorem about second order
differential equations.

Theorem 4. Consider the second order differential equation x" + Fx =
0, where F is a continuous function defined on [0, L]. Let z: [0,L] — R be
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a solution for which z(0) = 0 and 2z’(0) #£ 0. If

[ Foarsn [mm @ F0)

and F is not identically zero, then z(T) = 0 for some T in (0, L].
Furthermore, if the smallest such T is L, then F(t) = n*/L? for all t in
[0, L].
Theorem 1 can be restated in terms of the integral of the Ricci curvature.
It is then apparent that it follows from the following stronger result. -
Theorem 5. Let M be a finite volume complete riemannian manifold of
dimension n.
(1) If Ric has an integrable positive or negative part, then

/ Ric < 0.
z

(2) If Ric is bounded above, then
/ Ric < n(n — 1)'/2/sup(0, Ric)/ v
SM-Z SM

Here Z denotes the subset of SM consisting of unit vectors v for which
the geodesic ¢, : [0,00) — M defined by ¢,(¢) = exp(tv) gives rise to no
conjugate points of ¢,(0).

The author would like to thank Detlef Gromoll for many helpful con-
versations and suggestions. Thanks are also due to Demir Kupeli, for
pointing out that any estimate for conjugate points should be a special
case of a more general result for differential equations.

2. Basic facts and technical lemmas

2.1. Conjugate points along geodesics. We refer to (3] as a basic refer-
ence.

Let M be a riemannian manifold, and let ¢: [0, L] — M be a unit speed
geodesic on M. ¢(7) is said to be a conjugate point of ¢(0) along ¢ (where
0 <7< L)if expygy: TMy o) — M is singular at 7'¢(0). The multiplicity
of the conjugate pomt is deﬁned to be the dimension of the nullspace of
the differential of exp,q, at 7¢'(0).

Equivalently, c(7) is conjugate to ¢(0) along ¢ when there is a Jacobi
field J along c, other than the zero field, that vanishes at 0 and 7. The
multiplicity of c¢(7) is the dimension of the vector space generated by all
such Jacobi fields.
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The index form 7, associated to ¢ is defined by

L

rvw) = [(5E 20— Ry, W de,
o \ dt’ dt

where V, W are continuous piecewise smooth vector fields on ¢ that are

orthogonal to ¢, and vanish at 0 and L. Such vector fields will be called

admissible (or c-admissible, whenever there might be confusion).

There exists a conjugate point ¢(7) to ¢(0) along ¢, 0 < t < L, precisely
when there exists an admissible vector field V' on ¢, where V' is not the
zero field, for which I.(V, V) < 0. If the only conjugate point to ¢(0) along
¢ is ¢(L), then the admissible V' for which I.(V, V) < 0 are precisely the
Jacobi fields vanishing at 0 and L.

We wish to recall the well-known

Morse Index Theorem. The number of conjugate points to c¢(0) along
clio,), counted according to multiplicity, is equal to the dimension of a
maximal subspace of admissible fields for which I, is negative definite.

This theorem is used here to count conjugate points. Counting will
usually not be according to multiplicity.

Lemmal. If0< T, < T; < L anditis known that c(0) has a conjugate
point along clio,1,) and c(Ty) has a conjugate point along c|ir, r,), then it
Jollows that c(0) has a conjugate point c(T) along c, where Ty < T < Ts.

By repeated application of Lemma 1, we have

Lemma 2. If0 < T, < T, < < T, <L and it is known that
¢(0) has a conjugate point along c|o,1,3, ¢(T1) has a conjugate point along
clir.rys -+ »¢(Tx—1) has a conjugate point along c|it,_ | 1,), then it follows
that c(0) has at least k conjugate points along c.

In Lemma 3, conjugate points are counted according to multiplicity.

ILemma3. If0O< 7T, < T < < T, <L anditis known that c(0)
has o conjugate points along c|jo,1,1, ¢(T1) has oy conjugate points along
clir s 5 €(Tk—y) has ay conjugate points along c|ir, _, 1,3, then it follows
that

k k
Y ai—k(n-1)<a< ai+k(n-1),
i=1 i=1

where o is the number of points conjugate to c(0) along cli 1,)-

Proof of Lemma 1. Without loss of generality 7, < L. Pick & > 0
(¢2 < L—=1T3). Then there exists £, > 0 for which ¢(7) +£1) has a conjugate
point along ¢|i7, +¢,,75+e,)-
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Take a maximal subspace of c|jo,7,+¢,;-admissible vector fields for which
the index form is negative definite, and extend it to a subspace of ¢{(o,7,+¢,-
admissible vector fields by taking the vector fields to be zero outside of
[0, T} + &;]. Call the resulting subspace W.

Now take a maximal subspace of ¢|i7,+¢,,7,+¢,)-admissible vector fields
for which the index form is negative definite, and extend it in a similar
way to give W,. By the Morse Index Theorem dim(#W,) > 0, so that
dim(W + W5) > dim(W)]). Applying the Morse Index Theorem again, we
see that ¢(0) has a conjugate point ¢(T) along ¢, where T1+¢; < T < Tr+é;.

Now, there exists .S satisfying 77 < § < T3, for which ¢(0) has no
conjugate points ¢(7) satisfying 77 < 7 < §. This tells us that ¢(0) has a
conjugate point ¢(7T) along ¢, where S < T < T, + &. This is true for any
positive ¢; and S > T, so that ¢(0) has a conjugate point ¢(7") along c,
where 7' < T < T>.

Proof of Lemma 2. By repeated application of Lemma 1, there exist
conjugate points ¢(7;), c(72), -, c(ty) to c(0) along c, satisfying

O<1 <7< < <1, £Tp.

Proof of Lemma 3. Define Ty to be 0. Note that conjugate points are
counted according to multiplicity in this proof. Take a maximal subspace
of ¢|r,_,,r,;-admissible vector fields for which the index form is negative
definite. Call it W;. Extend it to a subspace of c|o 7,;-admissible vector
fields by taking the vector fields of W, to be zero outside of [7;_, T;]. Call
this subspace W;. Let W be the direct sum of the W:’s.

Since ¢(7;-1) has at least o; — (n — 1) conjugate points along ¢|i7,_, 7;)
we have that dlm( N> ar—(n— 1) and so

dim(W >Za,—kn—l

Since a > dim(W),

k
Y ai-k(n-1)<a
i=1

Since ¢(7;-1) has at most o; conjugate points along c|7,_, ), it follows
that dim(W}) < «;, so that

k
dim(W) <> o
i=1

Now extend W to a maximal subspace of c|jo, 7, ]-admissible vector fields
for which the index form is negative definite. Call this space X, and note
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that
a<dimX + (n-1).
Let W’ be the orthogonal complement of W in X (with respect to 7).
By showing that dim W’ < (k — 1)(n — 1), we are done, since then
a <dimX+(n— )=dimW +dim W'+ (n—-1)

<Za,+(k— Dn-1)+(n-1).
i=1
Suppose that dim W’ > (k — 1)(n — 1). Since the maximum possible di-
mension of the image of the linear map sending V' in W’ to (V/(Ty), V/!(T>),
, VI(Tr—1)) is (k — 1)(n — 1), there exists a nontrivial vector field V' in
W' for which

V(T) =0,V(T3) =0, ,V(Ti1) = 0.

Forsome j from ltok, V; = V![Tj_l,rj] is a nontrivial vector field for which
1(V;,V;) <0, and I(V}, W;) = O, since I(V, W) = 0. This contradicts the
maximal property of K

2,2. The geodesic flow and the ergodic theorem

We refer to [8] as a basic reference.

Let M be a complete riemannian manifold, and SM its unit tangent
bundle. The geodesic flow G: SM x R — SM on SM is defined by
G(v,t) = c'(t), where c(s) = exp(sv). G(v,t) will be written as G;(v).

The unit tangent bundle possesses a Borel measure determined by the
riemannian structure of its base manifold. It is called the Liouville mea-
sure, and it is invariant with respect to the geodesic flow.

Birkhoff’s Ergodic Theorem applies to measure spaces with a measure
invariant flow. In our case, we have

BirkhofP’s Ergodic Theorem. Let M be a complete riemannian man-
ifold, G: SM x R — SM be the geodesic flow, and f: SM — R be a
Sfunction whose positive or negative part is integrable with respect to the
Liowville measure u. Then the following hold:

(1) The following limit exists for almost all v in SM :

1 T
lim —/ f(Gw)dt.
T Jo

T—o0

(2) If A is a flow invariant subset of SM of finite measure, then

T
/A fv)du(v) = /A lim - /0 £(Gv)dt du(v).
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Letting o be any real number, the above statement is also true when

lim _/ F(Gw) dt

T—oo 1

- is replaced by

N—oo N

1 N-—1
lim — Z F(Grav)
k=0

3. On the density of conjugate points along geodesics

Let M be a complete riemannian manifold. Any unit tangent vector v
on M determines a unit speed geodesic ¢, : [0, 00) — M via ¢}, (0) = v, and
then two elements of [0, +co], namely,

the number of points conjugate to)

= 11m inf — )

Z( ) T—oo. T ( (0) along CvI[O,T]

V(v) = lim sup 1 (the number of points conjugate to)
T \ ¢y(0) along cy 0,1 ’

T—o00
Writing n for the dimension of M, we immediately have
Proposition 1. If B is a positive number for which Ric(c)) < B, then

1 1 .
yv) > mhp}gf T RIC(C (1) dt. |

It is clear that if ¢, gives rise to no conjugate points of c,(0), then
y(v) = Y(v) = 0. The converse is not true. The paraboloid z = x% 4+ y?
has many unit tangent vectors that serve as counterexamples.

However, the following is true.

Proposition 2. Let M be a complete riemannian manifold with finite
volume. Then the set of unit vectors v for which w(v) = 0 and the set of
those for which c,(0) has no conjugate points along c, differ by a set of
measure zero.

With regard to yw and ¥, it is natural to ask whether they are really
different. To show that they are the same, it suffices to show that y2>v.
Along these lines, it is true that (n — 1)y > ¥ almost everywhere for M a
complete riemannian manifold of dimension n. This follows from

Proposition 3. Let M be a complete riemannian manifold. Then the
Jollowing is a well-defined element of [0, +o0] for almost all v in SM:

the number of points conjugate to
¢ (0) along cylj0,73,
counted according to multiplicity

11m —

T—o0
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4. Proofs of the propositions and Theorem 2

First, we give some notation:

cy: [0,00) — M is the geodesic ¢,(¢) = exp(tv) for v a unit tangent
vector of a riemannian manifold Af.

Z denotes the set of unit vectors v for which ¢,(0) has no conjugate
points along c¢,.

Z' denotes the set of unit vectors v for which ¢, has finitely many
conjugate points along ¢;,.

Z" denotes the set of unit vectors v for which ¥(v) = 0.

Z'"" denotes the set of unit vectors v for which y(v) = 0.

We have Z C Z' C Z" C Z'. Note that Z',Z",Z'" each are invariant
with respect to the geodesic flow. ux will denote the Liouville measure on
SM.

Proof of Proposition 2. We are required to show that Z and Z’” differ
by a set of measure zero. It suffices to show that u(SM—-Z"") > u(SM-Z).

For each positive integer j, define fj: SM — R by

1, if ¢,(0) has a conjugate point along ¢, |0,
fi= :
0, otherwise.

Also, define f: SM — R by

1, if ¢,(0) has a conjugate point along c,,
f= .
0, otherwise.

Then f; approaches f from below, as j goes to infinity. It follows that

lim fi= S

J—=oo Jom SM

By Lemma 2,

for all unit vectors v for which the above limit exists. For v in Z", we
then have

N—oo

N_l . .
lim 3 W ~ 0.
k=0
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We can now conclude that

uSM-2)= f = lim fi
sM j—oo SM
. . f}(G k’U
=1 1 j
= lim lim Z f"” (v)

j—oo Jepm—z N—oco

5/ 1= u(SM - Z").
SM~zm

Proof of Theorem 2. Suppose that

L
/ Ric(c'())dt > n(n — 1)/? n}gx (0, Ric(c'(1)))
0 e
and Ric(c’) is not identically zero.

To show that ¢(0) has a conjugate point along ¢, it suffices to find an
admissible vector field W: [0, L] — TM on ¢, which is not identically zero
and for which I.(W, W) < 0.

Letting f = max,cp ) Ric(c’(f)) we have that § is positive. Let y =
(n/2)y/(n —1)/8 so that 0 <y < L/2. Define v: [0,L] — R by

sin{z¢/2y), if0<t<y,
v()=¢ 1, ify<t<L-y,
sin(m(L —1)/2y), ifL-y<t<L.

Let E be a parallel unit vector field on ¢ that is orthogonal to ¢, and let
V =vE. Then

L
I, V)=/O <%,%>—<R(V,d(z))c'(z), Vydi
= /yv’(t)2 + (1= v()){(R(E, () (1), E)dt
0
+ /LL V(2 + (1 —v(O)DR(E, () (1), E)dt
-y

- / " RE. ()¢ (1), E) d.
0
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Let Eq,---, E,_; be mutually orthogonal parallel unit vector fields on ¢
that are orthogonal to ¢. Let V; = vE; for i =1 to n — 1. We then have

n—1
IV, V) = /y(n — DU'(6)? + (1 — v(?)H)Ric(c' (1)) dt
e 0
1 5 |
+/ (n — D' (1)? + (1 — v(£)®)Ric(c'(r)) dt
L

-y

L
_ / Ric(c'(¢)) dt
yO
< / (n— D' )+ (1 —v()?)p dt
0

+ /L (n— ')+ (1 —v()))Bdt —n(n— 1)/

L—y
= 0.

We now move onto the equality condition. Suppose the first conjugate
point to ¢(0) along c is ¢(L). Since 7' I(V;, V;) < 0 and I(V;, V;) > O for
i=1ton—1,each V; is a Jacobi field. This means that v is C, so that
y = L/2, giving us v(¢) = sin(nt/2y). The fact that V' = vE is a Jacobi
field now tells us that

(R(C'(1),E)E,c'(t)) = (n/2y)
for all ¢ in [0, L]. Using y = L/2 once more, we can conclude this proof
with '
(m/2y)? = n? /L2
Proof of Proposition 1. By Theorem 2 and Lemma 2, if ¢, (0) has exactly
N conjugate points along ¢, |jo,7], then

/TRic(c{,(t))dt <(N+Dr(n-11"2/8
0

so that

1 1 [Ty, (N+1)
WT/O' Ric(c, (1)) dt < :

Proof of Proposition 3. For v a unit tangent vector, define
_ the number of points conjugate to
Q(’U) = llyr‘ll’lol’.}ff (CU(O) along c11|[0,7']: ) >
counted according to multiplicity
the number of points conjugate to
¢(v) = limsup T ( )

T—oo

¢ (0) along ¢, |jo,77
counted according to multiplicity
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It suffices to show that ¢(v) < ¢(v) for almost all v.
For j a positive integer, define g SM — R by

the number of points conjugate to
gj(v) = | ¢(0) along ¢l 1, ;
counted according to multiplicity

and g&; by
N-1
g = 1\;1_1.13,0? ;) gj(ijv)

By Birkhoff’s Ergodic Theorem, this is well defined almost everywhere.

Whenever g;(v) exists, we have in consequence of Lemma 3,

1. -1 — 1. -1
¢0) 2 20 - U Bw<s _,<v‘>+<_"j_)
For almost all v, we then have
) < p(v) + 2<”’j‘ b

Letting j go to infinity, we are done.

5. Proofs of the remaining theorems

843

Proof of Theorem 5(1). By Proposition 2, it suffices to prove [,, Ric <

0.
By Birkhoff’s Ergodic Theorem,

T .
/ Ric = / lim / Ric(G,v) dt du(v).
Z! Z! Tooo T 0

Using Ambrose’s criterion for conjugate points and Lemma 2, we obtain

that for v in Z’,

T
liminf | Ric(c,(t))dt < +oo
T—oo Jo
from which it follows that

T
lim inf% Ric(c) (1)) dt < 0.

T—o0 0

In terms of the geodesic flow,

T
lim inf—;—, Ric(G,v)dt <0.

T—oo 0
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Combining this with

T
/ Ric = / lim ~ / Ric(Gv) dt du(v)
zZ! B zZ! T—’OO T 0
we are done.

Proof of Theorem 5(2). - By Proposition 2, it suffices to prove
/ Ric < z(n — 1)1/24/sup(0, Ric)/ .
SM—Z" SMT

Let 8 be any positive upper bound to the Ricci curvature. Birkhoff’s
Ergodic Theorem and Proposition 1 now give

T
/ Ricg/ lim l/ Ric(Gv)dtdu(v)
SM—=2Z" SM—zm T—oo T 0

T
=/ nminfi/ Ric(Gv)dtdu(v)
S 0

M—zi T—oo T

<[ VB Dwduw)=a/EE-D [ .
SM--Z" : SM

Proof of Theorem 1. By Theorem 3,

/ Ric < 7(n - 1)1/24/sup(0, Ric)/ w.
M SM—

n—1
/ Ric — VOl(AS_,Cdf_ll/ Scal
SM n M
we are done.

Proof of Theorem 4. Suppose that

L
| /0 F)de > 7 [max (0. (1)

and that F is not identically zero.

Following [6], to prove the existence of T in (0, L] satisfying z(T") = 0, it
suffices to find a continuous piecewise differentiable function ¢: [0, L] — R
such that ¢(0) = ¢(L) = 0 (and ¢ not identically zero) for which

L
/0 (8'(1))* — F(1)(6(1))? dt < 0.

Letting B = max,c[o,z) F(t) and y = n/2v/B so that 0 < y < L/2 we define
v:[0,L] — R by

Using

sin(mt/2y), if0<t<y,
v(t)=1¢ 1, ify<t<L-y,
sin(r(L —1)/2y), ifL-y<t<L.
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The argument can be completed by following the proof of Theorem 2.
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